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Abstract

We demonstrate the existence of a broad class of real numbers which are not elements
of any number field: those in the neighborhood of infinity. After considering the reals
and the affinely extended reals we prove that numbers in the neighborhood of infinity are
ordinary real numbers. As an application in complex analysis, we show that the Riemann
zeta function has infinitely many non-trivial zeros off the critical line in the neighborhood
of infinity.
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§1. Real Numbers

Definition 1.1. A real number x ∈ R is a cut in the real number line.

Definition 1.2. A cut in a line separates one line into two pieces.

Remark. A number is a cut in a line. A line is defined a priori. All lines can be

cut so all lines are number lines. A given line is the real line by definition. A real

number separates the real number line into a set of “larger” real numbers and a

set of “smaller” real numbers.

Definition 1.3. A real number R ∈ N shall be called “arbitrarily large” if and

only if

∀ x ∈ N ∃ R ∈ N : x < R .

Theorem 1.4. For an arbitrarily large radius R about the origin of the real num-

ber line, some real numbers lie outside that radius.

Proof. By Definition 1.3, R is an element of N. All elements of N have the property

that

∀ x ∈ N ∃ n ∈ N : x < x+ n .

Therefore, for an arbitrarily large radius about the origin, there exist numbers

R+ n which lie outside the radius.
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Definition 1.5. Call numbers beyond an arbitrarily large radius of the origin

“real numbers in the neighborhood of infinity” and call all other real numbers

“real numbers in the neighborhood of the origin.”

Definition 1.6. Let R0 be the set of all real numbers in the neighborhood of the

origin.

Definition 1.7. The real numbers are defined in interval notation as

R ≡ (−∞,∞) .

Definition 1.8. For x ∈ R and n ∈ N, we have the property

lim
x→0±

1

x
= diverges , and lim

n→∞

n∑
k=1

k = diverges .

§2. Affinely Extended Real Numbers

Definition 2.1. Define two affinely extended real numbers ±∞ such that for

x ∈ R and n ∈ N

lim
x→0±

1

x
= ±∞ , and lim

n→∞

n∑
k=1

k =∞ .

Definition 2.2. The set of all affinely extended real numbers is

R ≡ R ∪ {±∞} .

Definition 2.3. In R, ±∞ are such that the limit any sequence of real numbers

which diverges in R is equal to ∞ or −∞.

Theorem 2.4. If x ∈ R and x 6= ±∞ then x ∈ R.

Proof. Proof follows from Definition 2.2.

Definition 2.5. The affinely extended real numbers are defined in interval nota-

tion as

R ≡ [−∞,∞] .

Definition 2.6. Infinity is such that

∞−∞ = undefined , and
∞
∞

= undefined .

Definition 2.7. Infinity does not have the distributive property of multiplication.

For two non-zero real numbers a and b we have

∞
(
b+ a

)
=∞ .
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To the contrary, we write for two orthogonal unit vectors ê1 and ê2

∞
(
ê1 + ê2

)
= undefined .

Remark. In the above definition, the former case gives the appearance of a dis-

tributive property because we can sum b + a and then use the multiplicative ab-

sorptive property of ∞ to obtain a simplified result but we cannot do so in the

latter case which is only mentioned in anticipation of the expression ∞
(
x + iy

)
which appears in Section 5.

§3. Modified Infinity

Definition 3.1. When the ±∞ symbols appear as ±∞̂, let the hat be an instruc-

tion to delay the additive absorption of ±∞ indefinitely or until such delay causes

a contradiction. At that time the hat must be removed. The hat is inserted and

removed by choice except in the case where it invokes a contradiction and must

be removed by definition.

Example 3.2. An example of a statement in which the hat does not invoke a

contradiction and may be left in place is

x = ∞̂ − b .

Example 3.3. An example of a statement in which the hat invokes a contradic-

tion and may not be left in place is given by two sequences

xn =

n∑
k=1

k , and yn = c0 +

n∑
k=1

k ,

where n ∈ N and c0 is some non-zero real number. Since ∞ and ∞̂ are the same

number we can use Definitions 2.1 and 3.1 to write

lim
n→∞

xn =∞ = ∞̂ , and lim
n→∞

yn =∞ = ∞̂ .

We may also write, however,

lim
n→∞

yn = lim
n→∞

c0 + lim
n→∞

xn = c0 + ∞̂ .

This delivers an equality

∞̂ = c0 + ∞̂ ,

which contradicts the delayed additive absorption of ∞̂. At this point, we must

cease to delay additive absorption by removing the hat. Then

∞ = 1 +∞ ,
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demonstrates the usual additive absorptive property of infinity and there is no

contradiction.

Definition 3.4. ∞̂ is such that for any non-zero b ∈ R0

±∞̂+ b = b± ∞̂
±∞̂ − b = −b± ∞̂

±∞̂+
(
− b
)

= ±∞̂ − b
±∞̂+ b = ±∞̂ −

(
− b
)

−
(
± ∞̂

)
= ∓∞̂

±∞̂ · b = b · ±∞̂ =

{
±∞̂ if b > 0

∓∞̂ if b < 0

±∞̂
b

=

{
±∞̂ if b > 0

∓∞̂ if b < 0

b

± ∞̂
= 0 .

Definition 3.5. ∞̂ is such that

±∞̂+ 0 = 0± ∞̂ = ±∞̂ − 0 = undefined

±∞̂ · 0 = 0 · ±∞ = undefined

±∞̂
0

= undefined

0

± ∞̂
= 0 .

Remark. We will revisit the lack of an additive identity in Example 4.12.

Definition 3.6. ±∞ has all the properties assigned to ±∞̂ in Definitions 3.4 and

3.5 plus the additive absorptive operation for non-zero b ∈ R0

±∞± b = ±∞∓ b = ±∞ ,

such that b is an additive identity of ∞.

§4. Real Numbers in the Neighborhood of Infinity

Remark. By choosing any specific x0 ∈ N, we are constrained to have chosen a

number in the neighborhood of the origin. The radius of the origin is arbitrarily

large and any x0 that we might choose is less than an arbitrarily large number

(Definition 1.3.) Therefore, x0 is in the neighborhood of the origin.
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Definition 4.1. Let R̂ be the set of all numbers of the form

x = ±
(
∞̂ − b

)
, where b ∈ R0 , b > 0 ,

Theorem 4.2. All numbers x ∈ R̂ are cuts in the affinely extended real number

line, i.e.: they are affinely extended real numbers.

Proof. Definition 1.2 requires that a cut separates one line into two pieces. Observe

that

R/(∞̂ − b) ≡ [−∞, ∞̂ − b) ∪ (∞̂ − b,∞]

R/
(
− ∞̂+ b

)
≡ [−∞,−∞̂+ b) ∪ (−∞̂+ b,∞] .

Main Theorem 4.3. All numbers x ∈ R̂ are real numbers.

Proof. If a number is an affinely extended real number x ∈ R and x 6= ±∞ then

by Theorem 2.4 we have x ∈ R. In the absence of additive absorption,

±
(
∞̂ − b

)
6= ±∞̂ = ±∞ ,

because it is the definition of R̂ that b 6= 0. Also note that

R/(∞̂ − b) ≡ (−∞, ∞̂ − b) ∪ (∞̂ − b,∞) .

All numbers x ∈ R̂ satisfy Definition 1.1.

Theorem 4.4. All numbers x ∈ R̂ are real numbers in the neighborhood of infin-

ity.

Proof. Consider an arbitrarily large radius R about the origin of the real number

line. By Definition 1.3 we have R ∈ N and it is the property of N that all of its

elements are finite. If x is in the neighborhood of the origin then

∞̂ − b ≤ R .

We have b ∈ R0 and it is known that all such numbers have an additive inverse.

Therefore, add b to both sides to obtain

∞̂ ≤ R+ b .

This delivers a contradiction: infinity cannot be less than or equal to the sum of

two finite numbers.

Theorem 4.5. Not all real numbers in the neighborhood of infinity can be repre-

sented as ±
(
∞̂ − b

)
.
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Proof. Let the arbitrarily large radius of the neighborhood of the origin be R.

Following Theorem 1.4, there are numbers beyond the radius in the form

x = R+ n , where n ∈ N .

Assume

∞̂ − b = R+ n ,

to obtain a contradiction

∞̂ = R+ n+ b .

Infinity cannot be the sum of three finite numbers.

Definition 4.6. The ordering of R̂ numbers is such that

±
(
∞̂ − b

)
= ±

(
∞̂ − a

)
⇐⇒ a = b(

∞̂ − b
)
>
(
∞̂ − a

)
⇐⇒ a > b

−
(
∞̂ − b

)
> −

(
∞̂ − a

)
⇐⇒ a < b(

∞̂ − b
)
> −

(
∞̂ − a

)
.

Remark. The remaining definitions in the section define the arithmetic opera-

tions for R̂ numbers. The purpose in defining these operations is to supplement

the canonical operations for R0 and ∞ ∼ ∞̂. Every R̂ number can be decomposed

and its pieces manipulated separately but the main purpose of defining special

operations for R̂ is to define new operations for expressions which are undefined

under the arithmetic operations of R0 and ∞ alone or whose structure vanishes

under additive absorption.

Definition 4.7. The arithmetic operations of R̂ numbers with R0 numbers are

−
(
∞̂ − b

)
= −∞̂+ b

−
(
− ∞̂+ b

)
= ∞̂ − b

±
(
∞̂ − b

)
+ x = x±

(
∞̂ − b

)
=

{
±∞̂ ∓

(
b− x

)
if b 6= x

±∞̂ if b = x

±
(
∞̂ − b

)
· x = x · ±

(
∞̂ − b

)
=

{
±
(
∞̂ − xb

)
if x 6= 0

undefined if x = 0

±
(
∞̂ − b

)
x

=

±∞̂ ∓
b

x
if x 6= 0

undefined if x = 0

x

±
(
∞̂ − b

) = 0 .
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Theorem 4.8. The quotient of a number x ∈ R0 divided by a number y ∈ R̂ is

identically zero.

Proof. Let z be any non-zero real number such that

x

y
= z .

Since ||x|| < ||y||, we have ||z|| < 1 which implies z ∈ R0. All R0 numbers have a

multiplicative inverse. We find, therefore, that

x

zy
= 1 ⇐⇒ x = zy .

The hat on ∞̂ only suppresses additive absorption so

zy = z · ±
(
∞̂ − b

)
= ±

(
∞̂ − zb

)
.

This delivers a contradiction because it requires that x is a real number in the

neighborhood of infinity while we have already defined it to be a real number in

the neighborhood of the origin. Therefore, the only possible numerical value for

x/y is 0.

Definition 4.9. The arithmetic operations of R̂ numbers with R̂ numbers are

±
(
∞̂ − b

)
±
(
∞̂ − a

)
=

{
±∞̂ ∓

(
b+ a

)
if a 6= −b

±∞̂ if a = −b

±
(
∞̂ − b

)
∓
(
∞̂ − a

)
= ±

(
a− b

)(
∞̂ − b

)(
∞̂ − a

)
= undefined

∞̂ − b
∞̂ − a

= undefined .

Theorem 4.10. Products of the form R̂ · R̂ are undefined.

Proof. ∞̂ is not endowed with the distributive property of multiplication so(
∞̂ − b

)(
∞̂ − a

)
= ∞̂

(
∞̂ − a

)
− b
(
∞̂ − a

)
= undefined .

Theorem 4.11. Quotients of the form R̂/R̂ are undefined.

Proof. Observe that
∞̂ − b
∞̂ − a

=
∞̂
∞̂ − a

− b

∞̂ − a
.
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Insert the multiplicative identity into the first term so that

∞̂ · 1
∞̂ − a

= ∞̂
(

1

∞̂ − a

)
= ∞̂ · 0 = undefined .

Remark. Although (
∞̂ − b

)
−
(
∞̂ − a

)
= a− b ,

implies the existence of an additive inverse for every R̂ number, this does not

imply an additive inverse for ∞ because the case of a = b = 0 is ruled out by the

definition of R̂.

Example 4.12. Definition 3.5 states that infinity does not have an additive iden-

tity element. An example motivating this condition is given by the limit

lim
x→∞

(
x2 − x

)
=∞

lim
x→∞

(
x2 − x

)
= lim

x→∞
x2 − lim

x→∞
x =∞−∞ .

which is usually used to demonstrate the lack of an additive inverse for∞. If infinity

is bestowed with an additive inverse then we obtain a contradiction ∞ = 0. The

expression∞−∞ is thus undefined. If we added the hats to infinity then we could

insert the additive identity to write

∞ = ∞̂ − ∞̂ = ∞̂ − ∞̂+ 0 = ∞̂ − ∞̂+ 1− 1 =
(
∞̂ − 1

)
−
(
∞̂ − 1

)
= 0 .

We see that unhatted infinity likewise cannot have zero as an additive identity

because we could write

∞ =∞−∞ =∞−∞+
(
1− 1

)
= ∞̂ − ∞̂+ 1− 1 =

(
∞̂ − 1

)
−
(
∞̂ − 1

)
= 0 .

where we have simply chosen not to do the additive absorptive operation within

the freedom afforded to the order of algebraic operations. This example confirms

that the only difference between ∞ and ∞̂ is an instruction to delay additive

absorption for the latter.

Remark. The expressions ∞ and ∞̂ are perfectly well defined but ∞ + 0 and

∞̂ + 0 are examples of an undefined composition. Since, ∞ is not an R̂ number,

this property cannot create problems for the algebra of R̂ numbers. Essentially, we

have traded the zero additive identity element of infinity for the freedom to add

and subtract R̂ numbers.

Theorem 4.13. An R̂ number does not have a multiplicative inverse.
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Proof. Assume

x
(
∞̂ − b

)
= 1 .

If x ∈ R̂ then the operation is undefined. If x ∈ R0 then we obtain

∞̂ − xb = 1 .

This is a contradiction because it requires that 1 is a number in the neighborhood

of infinity while also being smaller than an arbitrarily large number. If y ∈ R0 and

x is a number R+ y in the neighborhood of infinity which cannot be expressed as

an R̂ number then

∞̂ −
(
R+ y

)
b = 1 ,

and we invoke the same contradiction.

Remark. Since real numbers in the neighborhood infinity do not always have

a multiplicative inverse such numbers cannot be elements of number fields. The

common practice of using number fields as a generalized proxy for all numbers,

therefore, should be considered to have a narrower scope of valid application than

is commonly understood.

§5. Complex Numbers

Definition 5.1. A number is a complex number z ∈ C if an only if

z = x+ iy , where x, y ∈ R , i =
√
−1 .

Definition 5.2. As ∞ does not absorb −1 in 1D, in 2D we have the condition

that infinity does not absorb −1 or ±i.

Definition 5.3. As the extended real line has two distinct infinites, the extended

complex plane has four: {+∞,+i∞,−∞,−i∞}.

Definition 5.4. The affinely extended complex plane is

C ≡ C ∪ {±∞} ∪ {±i∞} .

Definition 5.5. The multiplicative operations for ±∞ and ±i∞ with i are

±∞ · i = ±i∞
±i∞ · i = ∓∞ .

Remark. The non-distributive property of ±∞ (Definition 2.7) was practically

redundant in 1D but for z ∈ C this feature gains significance.
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Definition 5.6. The multiplicative operations for ±∞ with complex numbers

z ∈ C are

±∞ · z = z · ±∞ =



±∞ if Re(z) > 0 and Im(z) = 0

∓∞ if Re(z) < 0 and Im(z) = 0

±i∞ if Im(z) > 0 and Re(z) = 0

∓i∞ if Im(z) < 0 and Re(z) = 0

undefined if Im(z) 6= 0 and Re(z) 6= 0

undefined if z = 0

.

Definition 5.7. The multiplicative operations for ±i∞ with complex numbers

z ∈ C are

±i∞ · z = z · ±i∞ =



±i∞ if Re(z) > 0 and Im(z) = 0

∓i∞ if Re(z) < 0 and Im(z) = 0

∓∞ if Im(z) > 0 and Re(z) = 0

±∞ if Im(z) < 0 and Re(z) = 0

undefined if Im(z) 6= 0 and Re(z) 6= 0

undefined if z = 0

.

Definition 5.8. The arithmetic operations for complex numbers z ∈ C whose real

and/or imaginary parts are R̂ numbers follow directly from the other definitions.

Corollary 5.9. The Riemann zeta function has infinitely many non-trivial zeros

off the critical line.

Proof. Consider a number z0 ∈ C such that

z0 = −
(
∞̂ − b

)
+ iy0 , where b, y0 ∈ R0 .

Observe that

ζ(z0) =
∏

p|primes

1

1− p(∞̂−b)−iy0

=
1

1− P (∞̂−b)−iy0

 ∏
p|primes

p 6=P

1

1− p(∞̂−b)−iy0



=
1

1− 1

P b
P ∞̂

[
cos(y0 lnP )− i sin(y0 lnP )

]
 ∏

p|primes
p 6=P

1

1− p(∞̂−b)−iy0

 .
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Let y0 lnP = 2nπ for some prime P and n ∈ N. Then

ζ(z0) =
1

1− ∞̂

 ∏
p|primes

p 6=p′

1

1− p(∞̂−b)−iy0

 .

By Theorem 4.8, we find that

ζ(z0) = 0 .

Since z0 neither is on the critical line nor the real axis, the Riemann hypothesis is

false.
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